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Hierarchical noise in large systems of independent agents

Claus Wilke and Thomas Martinetz
Institut für Neuroinformatik, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

~Received 22 May 1998!

A generalization of the coherent-noise models@M. E. J. Newman and K. Sneppen, Phys. Rev. E54, 6226
~1996!# is presented where the agents in the model are subjected to a multitude of stresses, generated in a
hierarchy of different contexts. The hierarchy is realized as a Cayley tree. Two different ways of stress
propagation in the tree are considered. In both cases, coherence arises in large subsystems of the tree. Clear
similarities between the behavior of the tree model and of the coherent-noise model can be observed. For one
of the two methods of stress propagation, the behavior of the tree model can be approximated very well by an
ensemble of coherent-noise models, where the sizesk of the systems in the ensemble scale ask22. The results
are found to be independent of the tree’s structure for a large class of reasonable choices. Additionally, it is
found that power-law distributed lifetimes of agents arise even under the complete absence of correlations
between the stresses the agents feel.@S1063-651X~98!09012-6#

PACS number~s!: 05.90.1m, 87.10.1e
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I. INTRODUCTION

It has recently been shown that in large systems of in
pendent ‘‘agents,’’ the interplay of two different types
noise can lead to power-law distributed quantities, such
lifetimes of the agents or sizes of reorganization events@1#.
One of the two noises, usually referred to as stress, has t
coherently on all agents, while the other one, usually refer
to as mutation or reloading, has to act individually on ea
agent, and on a much longer time scale. Mechanisms of
kind have been called ‘‘coherent-noise’’ mechanisms. Mo
els incorporating coherent-noise mechanisms have been
forward to explain effects seen in earthquakes, rice piles
biological evolution and extinction@1–4#.

In most applications, however, it is hard to justify a sing
stress imposed on the whole system at once. In Ref.@2#, the
stress was identified with global influences on the biosph
as in the case of extraterrestrial impacts@5#. Nevertheless,
there are more reasons for species to go extinct than imp
Often, species’ extinction is a local phenomenon@6#. For
example, species living in a small territory regularly die o
because of the invasion of a new species, able to exploit t
ecological niche more effectively. A similar argument a
plies to the situation of earthquakes. In Ref.@1# the stress has
been interpreted as background noise with long wavelen
generated by some distant external source. Nonetheless
large fault system, we would expect background noise to
present also locally, and probably on smaller and lar
scales at the same time@7#.

The aim of the present paper is to advance a model t
while incorporating the basic ideas of coherent-noise s
tems, can deal with more complex situations by consider
stress on different scales. A short account of this work
already been given elsewhere@8#. There, only regular tree
~see below! have been treated.

II. AGENTS IN A HIERARCHICAL CONTEXT

It is an observation from everyday life, as well as fro
many physical systems@9#, that very often objects or agen
PRE 581063-651X/98/58~6!/7101~8!/$15.00
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are embedded into a hierarchy of different contexts, all h
ing influences on them. Mathematically, this idea can be
scribed with the concept of ultrametricity@10#, which means
there exists a distanced(,) such that the triangle inequalit
d(A1 ,A3)<max$d(A1,A2),d(A2,A3)% holds for any three
agentsA1 ,A2 ,A3 . Geometrically, an ultrametric space ca
be conceived of as a Cayley tree. In the following, vertices
the tree connected to exactly one other vertex will be ca
leaves, and vertices connected to two or more other vert
will be called nodes. In this paper, the nodes of the tree st
for different contexts, and the agents are placed at the tr
leaves.

We can formulate a generalization of the origin
coherent-noise model by incorporating the above ideas.
system consists ofN agents, each represented by a real nu
ber ~threshold! xi or, in the general case, a vectorxi . Fur-
thermore, we choose a tree withNn nodes andNl5N leaves,
which meansNv5Nn1Nl vertices in total. The tree will be
kept fixed throughout the simulation. At every leaf we p
exactly one agent. For every nodej of the tree we choose a
stress distribution with probability density function~PDF!
pj (x). Additionally, we also choose a stress distribution f
every leaf of the tree, so that we have a stress distribution
every vertex of the tree. The stress distributions at the lea
allow us to simulate extremely localized influences acting
only a single agent. The total number of stresses in the
tem is thereforeNstress5Nv .

The course of the simulation runs as follows. At the b
ginning, the agents are initialized with random thresho
drawn from a distributionpthresh(x). Then, in every time
step, three actions are performed.~i! From each of theNstress
stress distributions, a stressh j is chosen at random.~ii ! For
every agenti, from all the Si stress valuesh1

( i ) , . . . ,hSi

( i )

above the agent in the tree, a stressh i
eff is calculated accord-

ing to some functionA:

h i
eff5A~h1

~ i ! , . . . ,hSi

~ i !!. ~1!

If h i
eff>xi , agenti is removed and replaced by a new o
7101 © 1998 The American Physical Society
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7102 PRE 58CLAUS WILKE AND THOMAS MARTINETZ
with a threshold chosen at random fromp thresh(x). ~iii ! Fi-
nally, every agent has a small probabilityf to get a new
threshold, again from the distributionpthresh(x). Action ~iii !
represents the mutation or reloading mentioned in the In
duction.

There are a number of reasonable choices for the func
A. In this paper, we will mainly study the ‘‘maximum rule,’
which reads

A~h1
~ i ! , . . . ,hSi

~ i !!5max$h1
~ i ! , . . . ,hSi

~ i !%. ~2!

Another natural choice is to sum up the stresses, i.e., to

A~h1
~ i ! , . . . ,hSi

~ j !!5(
j 51

Si

h j
~ i ! . ~3!

This alternative, which we will call ‘‘sum rule,’’ will also be
discussed in this paper.

III. THE EFFECTIVE STRESS DISTRIBUTION

The effective stress an agent feels can be calculated
actly in the case of the maximum rule, Eq.~2!. The agent is
subjected to the stress distribution at its leaf and to the st
distributions at the nodes above it. Let there beS21 nodes
above the leaf of an agent. Then theS stress values having
influence on this agent areS random variablesX1 , . . . ,XS
with PDF’s p1(x), . . . ,pS(x). To obtain the effective stres
distribution, we have to calculate the PDFpmax(x) of the
random variableXmax5max$X1, . . . ,XS%, i.e.,

pmax~x! dx5P~x<max$X1 , . . . ,XS%,x1dx!. ~4!

Note that

P~max$X1 , . . . ,XS%<x!5)
i

S

P~Xi,x!. ~5!

The derivative of Eq.~5! with respect tox yields

pmax~x!5(
i 51

S

pi~x! )
j 51,j Þ i

S

P~x.Xj !. ~6!

Equation~6! is the exact expression for the effective stre
on an agent in the case of the maximum rule, Eq.~2!. A
simple calculation shows that the right-hand side of Eq.~6! is
dominated by the slowest decaying stress distribution.
say that a distributionpi(x) decays slower than another di
tribution pj (x) if there exists ax0 such that

pi~x!.pj~x! for all x.x0. ~7!

For a set of reasonable stress distributions it is always p
sible to identify the distributionp0(x) that is falling off
slowest according to this definition. Hence, we find for t
PDF of the effective stress on an agent

pmax~x!;p0~x! for x→`. ~8!

A similar statement cannot easily be proved for the s
rule. However, in special cases the necessary calculat
-
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can be done. Consider, for example, the case of expone
stress distributionspi(x)5exp(2x/si)/si . In this case, we
find

psum~x!;
1

smax
expS 2

x

smax
D for x→`, ~9!

where smax5max$s1,s2, . . . ,sn%. A similar result can be
found in the case of stress distributions with power-law ta
@8#. It seems that in most of the reasonable cases, the su
the stresses will be dominated by a single distribution in
limit of large stresses, as in the situation of the maximum
the stresses.

IV. REGULAR TREES

In this section we are interested in trees which are c
structed as follows. We begin with a single leaf and conv
it into a node by connecting to itn new leaves. Then we
repeat this procedure for every new leaf. We stop the c
struction when we have reached a depth ofl iterations. Trees
generated in this way are called regular trees@11#. The tree
displayed in Fig. 1 is a regular tree withn52 andl 54.

The number of leaves in a regular tree is

Nl5nl , ~10!

and the number of vertices is

Nv5(
i 50

l 21

ni . ~11!

Therefore, we haveN5nl agents in such a tree, andNv
stress values have to be generated in every time step.

We saw in Sec. III that every agent feels effectively
single stress distribution in the limit of large stresses@Eqs.
~8!,~9!#. Since for coherent-noise systems, large stresses
the main contribution to the systems’ behavior, the str
distributions that are falling of very slowly dominate larg

FIG. 1. The breakdown of a regular tree withn52 and l 54
into independent subsystems. The solid lines connect agents
the same rank, the dashed lines connect agents with different ra
In this example, we have two subsystems of size 1~ranks 26 and
30!, two of size 2~ranks 24 and 27!, one of size 3~rank 25!, and
one of size 7~rank 29!.
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PRE 58 7103HIERARCHICAL NOISE IN LARGE SYSTEMS OF . . .
parts of the tree. Hence, the tree breaks down into s
systems that are to some extent decoupled from each o
For regular trees, it is relatively easy to study the aver
distribution of the subsystems’ sizes analytically. We assu
for any two stress distributionspi(x),pj (x) in the tree we
can identify one of the two that is falling off slower, accor
ing to Eq. ~7!. This is not a severe restriction, as we ha
noted in Sec. III. Additionally, we restrict ourselves to sit
ations in whichpi(x) andpj (x) are equally likely to fall off
slower than the respective other. Under these conditions
can rank all stress distributions in a tree, assigning rank
the one that is falling off fastest, and assigning correspo
ingly higher ranks to the ones that are falling off slower. Th
makes the calculation of the subsystems’ sizes relativ
easy. For every single agent, we have to identify the co
sponding highest rank placed above it in the tree~which we
will call the rank of the agent!. Then, we simply have to
count the number of agents with the same rank. This pro
dure is illustrated in Fig. 1.

We expect the mean distribution of subsystems’ sizes
have sharp peaks whenever the size of a complete subtr
reached, because the probability for a single rank to
higher than all others further down the tree should be lar
than the probability for a complicated arrangement of ra
to produce a subsystem of a certain size. The sizek of a
subsystem is the number of leaves in that subsystem.
functional dependency of the peaks at sizek is calculated as
follows. The expected frequencyf (k) of independent sub
trees of depthb, corresponding to a subsystem of sizek
5nb, can be written as the number of such subtrees in
whole systemNsub(n

b) times the probability that any o
these subtrees will be independent of the restP indep(n

b).
Hence we write

f ~nb!5Nsub~nb!Pindep~nb!. ~12!

The number of subtrees of sizenb is

Nsub~nb!5nl 2b. ~13!

A subtree is independent of the rest if the rank at its roo
higher than all other ranks in the subtree and at the no
above the subtree. The probabilityPindep(n

b) is therefore the
reciprocal of the number of vertices in the subtree plus
number of vertices above the subtree, hence,

Pindep~nb!5S l 2b1(
i 50

b

ni D 21

. ~14!

If we increase b by one, we getNsub(n
b11)5nl 2b21

5Nsub(n
b)/n. With slightly more effort, we find also

Pindep~nb11!5S l 2b211 (
i 50

b11

ni D 21

5S l 2b1n(
i 50

b

ni D 21

'
1

n
Pindep~nb!.

~15!

Therefore, we can write
b-
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f ~nk!'
Nsub~k!

n

Pindep~k!

n
5n22f ~k!, ~16!

which implies f (k);k22.
This result is interesting. The frequency of subsystems

sizek scales ask22, independent of the parametern which
characterizes the structure of the tree.

We have tested these predictions by measuring the
quency f (k) in computer experiments. Our simulations a
set up as follows. We choose a tree withNv vertices in total.
For several thousand times, we assign the integers from
Nv randomly to the vertices of the tree. The integers sta
for the rank of the stress distributions at the vertices. F
every single realization of this process, we determine
sizes of the subsystems the tree breaks down into, and c
pute a histogram of the sizes’ frequencies. Finally, we cal
late the average over all histograms.

Figure 2 shows the results of such measurements for
different trees with 10 000 histograms each. We can see c
peaks at powers ofn, which correspond to complete subtree
We also find the heights of the peaks to decrease ask22, in
agreement with Eq.~16!.

V. RANDOM TREES

The regular trees treated in the previous section can
easily generalized to a broader class of trees, which we
call ‘‘random trees.’’ Only a small change in the constru
tion algorithm is necessary. To construct a regular tree
every iteration step we connectn new leaves to every leaf o
the previous step. The straightforward generalization of t
procedure is to choose a random number of new leaves
every leaf of the previous construction step. To avoid con
sion with the parametern, we will call this random number
nrand. The random variablenrand will take valuei with prob-
ability pi , i.e., P(nrand5 i )5pi , i 50,1,2,. . . , ( i pi51. We
denote the mean ofnrand by mª^nrand& and the variance by
s2. Moreover, we assumem.1 in all cases considered i
this paper. In the limits2→0, the random trees reduce t
regular trees withn5m.

FIG. 2. The expected frequency of subsystems of sizek de-
creases as a sawtooth function following approximately a po
law with exponent22. The upper curve stems from a tree withl
517 andn52. It has been rescaled by a factor of 100 so as no
overlap with the lower curve. The lower curve stems from a t
with l 55 andn510. Quantities are plotted in arbitrary units.
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7104 PRE 58CLAUS WILKE AND THOMAS MARTINETZ
The construction of a random tree as prescribed above
branching process withl generations. From the theory o
branching processes@12#, we know that for largel the num-
ber of leaves in the tree will be

Nl5Wml , ~17!

whereW is a random variable with mean^W&51. The factor
W takes into account fluctuations that happen at the be
ning of the tree’s construction. Correspondingly, for the to
number of vertices in the tree we use the approximation

Nv'W(
i 50

l

mi . ~18!

The above two equations are the generalizations of E
~10!,~11! for random trees.

As in the case of regular trees, we are interested in
quantity f (k), the expected frequency with which indepe
dent subsystems of sizek occur. In the previous section w
made the assumption that the main contributions tof (k)
come from complete subtrees. The comparison with num
cal data showed that this assumption leads to a good un
standing of the structure off (k). Consequently, in the cas
of random trees we also assume that we can concentra
complete subtrees.

The number of subtrees of sizek in a large tree is on
average the size of the tree~which is the number of leaves i
the tree! divided byk. Hence we have

Nsub~k!5
Nl

k
, ~19!

which is equivalent to Eq.~13! for regular trees.
The probability for a subtree of sizek to be dominated by

a single stress distribution is one over the total number
vertices in the subtree. The number of vertices is asymp
cally the same as the number of leaves. This can be s
from Eqs.~17! and ~18!. The leading term in the number o
vertices in a random tree Eq.~18! is exactly the expression
for the number of leaves in the same tree Eq.~17!. Hence we
have

Pindep~k!;
1

k
. ~20!

We combine this result with Eq.~19! and obtain

f ~k!;
1

k2
. ~21!

As in the case of regular trees, the frequency of indepen
subtrees of sizek scales ask22, independent of the details o
the tree. With a little effort, it is also possible to calculate t
constant of proportionality. We find

f ~k!5
aNl

k2

m21

m
, ~22!

with
a

n-
l

s.

e

ri-
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f
ti-
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nt

a5F (
k51

Nl 1

l 112 logmk1~k21! @m/~m21!#G
21

. ~23!

Equation~22! is in good agreement with measuremen
from computer experiments. We have done simulations w
several different probability distributions fornrand, such as
uniform @p05c/(nmax1c), c>0, pi51/(nmax1c) for 1< i
<nmax, pi50 for nmax,i], geometric series@pi5bci 21 for
i>1, b,c.0, b<12c, p0512( j 51

` pj ], or Gaussian„pi

;exp@2(i2b)2/c#; hereb andc are not mean and variance
because we use only discrete values of the Gaussian p
ability density function…. In all cases, we find Eq.~22! to
approximate well the measured frequencyf (k). An example
is shown in Fig. 3. Deviations from the straight line can
seen for very smallk and for very largek. In these two
limiting cases, the assumptions of the above approximati
are no longer valid. Consider first the case of a very smak.
This corresponds tok'm, because we always assumem
!Nv ~otherwise, the tree would have roughly a depth of
which would not be very interesting!. If k is close tom, the
number of subtrees of sizek depends strongly on the exa
form of the probability distribution ofnrand, and Eq.~19! is
no longer valid. Since, as seen above, the main contribu
to f (k) comes from complete subtrees, the distribution
nrand then has effects onf (k). For example, in a situation
whereP(nrand5m)50, there should be a clear dip inf (k) at
k5m.

Consider now the case of a very largek. Again Eq.~19! is
no longer valid. This time because there are so few subt
of size k. Hence, the exact structure of the tree comes i
play. For example, a tree withNv5105 containing a subtree
with k563104 will not contain another subtree withk
553104. Therefore, in this situation there should be a cle
peak atk563104.

VI. SIMULATION RESULTS

As the main result of Secs. IV and V, we found the d
tribution of independent subsystems of sizek in the tree to be
proportional tok22. Therefore, in the limit of large stres
valuesh, we expect the tree model to behave like an e
semble of coherent-noise models whose sizes scale ask22.

FIG. 3. The expected frequency of subsystems of sizek in a
random tree withm51.993 andl 513. The dotted line is the ap
proximation Eq.~22!. Quantities are plotted in arbitrary units.



e
fo

ple
th
in
av
.
he
e
su

en
f

T
th

m
is

rve
ble

flect
and
the

s of
de-
in

er-
the

ibu-

tri-

ble
ses,
aw
f
be-
nt in
ere,

tri-
sed
as in
dif-

as a
g. 6.

the

-

gn-
in

ize
ach
ting
in

tre

sy
’s

sys-
ig.
nset
nk-

PRE 58 7105HIERARCHICAL NOISE IN LARGE SYSTEMS OF . . .
When constructing the ensemble approximation of a c
tain tree, we have to choose the right stress distribution
every coherent-noise model in the ensemble. In princi
this can be a complicated task. However, we have found
a very simple approach instead works sufficiently well
many cases. It can be motivated with Fig. 4. There, we h
recorded the average ranks of the subsystems in a tree
terestingly, the average rank varies only very little with t
subsystem’s sizek. Therefore, in a further approximation, w
assume that all the stress distributions that dominate a
system have the same rank, i.e., they are all the same~we use
a singlestress distribution, but thestress valuesare still cho-
sen independently for all systems in the ensemble!.

Our numerical simulations show the similarity betwe
the tree model and the ensemble. We begin with results
the maximum rule.

A. The distribution of event sizes

As in previous work@13,14#, an ‘‘event’’ is the reorgani-
zation of agents because of stress in a single time step.
size of an event is the total number of agents hit by
stress.

The event sizes of a typical simulation with maximu
rule are recorded in Fig. 5. The lower curve shows the d

FIG. 4. The average rank of the subsystems in a random
Quantities plotted are dimensionless.

FIG. 5. The event size distribution in a random tree~lower
curve! and in the corresponding ensemble of coherent-noise
tems ~upper curve!. The inset shows the distribution of the tree
subsystems. Quantities are plotted in arbitrary units.
r-
r
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at

e
In-

b-

or
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tribution of event sizes of a tree model, the upper cu
shows the same distribution of the corresponding ensem
of coherent-noise systems. The heights of the curves re
the total number of events we recorded for each model
have no special meaning. The sizes of the systems in
ensemble are exactly the ones we obtained for the size
the tree’s subsystems while doing the ranking procedure
scribed in Sec. IV. The distribution of these sizes is shown
the inset of Fig. 5.

The tree used in Fig. 5 is a random tree with 14 213 v
tices and 12 163 leaves. Hence, both the tree model and
ensemble contain 12 163 agents in total. The stress distr
tions used in the tree are exponentials exp(2x/si)/si , with
different valuess i between 0.03 and 0.06. The stress dis
bution used in the ensemble is an exponential withs
50.06.

As we can see in Fig. 5, the tree model and the ensem
behave very similar with regard to event sizes. In both ca
we find approximately a power-law decrease. A power-l
fit gives an exponent of 2.360.15 for the tree model, and o
2.260.15 for the ensemble. Note the clear difference
tween the exponent in these two systems and the expone
a single coherent-noise model with exponential stress. Th
the exponent is 1.8560.03 @13#.

The event-size distribution depends strongly on the dis
bution of the subsystems in the tree. In Fig. 6, we have u
the same tree structure and the same stress distributions
Fig. 5, but the stress distributions have been assigned to
ferent vertices. As a result, in this case the tree model h
lack of large subsystems, as can be seen in the inset of Fi
Consequently, large events appear less frequently, and
distribution is significantly steeper than in Fig. 5~now we
have an exponent of 2.960.2 for the tree model and an ex
ponent of 2.860.2 for the ensemble!.

It would be interesting to average over all possible assi
ments of the stress distributions to the different vertices
order to gain a better understanding of a typical event s
distribution in a large tree. However, we are not able to re
such a result due to the enormous amount of compu
power that is needed. The simulation of the full tree as

e.

s-

FIG. 6. The event size distribution in a random tree~lower
curve! and in the corresponding ensemble of coherent-noise
tems~upper curve!. The structure of the tree is the same as in F
5, but the stress distributions at the vertices are different. The i
shows again the distribution of subsystems obtained from the ra
ing procedure. Quantities are plotted in arbitrary units.
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7106 PRE 58CLAUS WILKE AND THOMAS MARTINETZ
Figs. 5 or 6 takes in fact about 150 hours of computing ti
on a UltraSPARC 2 with 168 MHz. On the other hand, t
simulation of the ensemble approximation takes only 6 ho
on the same system. Therefore, we can do the correspon
calculations for the ensemble approximation. Of course
cannot average over all possible configurations, but we
average over a reasonably large random sample. We
generated 60 ensemble approximations of a tree with 10
leaves. The event size distributions we found were all v
similar. In Fig. 7 we display the average event size distri
tion we obtained. The distribution has a power-law tail w
exponent 2.560.05.

B. Aftershocks

Coherent-noise models display aftershocks@1,14#, i.e., an
increased number of large events can be observed in
aftermath of a very large event. Consequently, we study
decay pattern of the aftershocks in the tree model and in
ensemble. We will restrict ourselves to the case of event
the aftermath of an initial infinite event. We follow close
the ideas and methods developed in Ref.@14#. Figure 8
shows the change of the probabilityPt(s>s1) with time.
Pt(s>s1) is the probability to find an event larger than som
constants1 at time t after an initial infinite event. For both
the tree model and the ensemble, the probabilityPt(s>s1)
decreases with time, indicating aftershocks. However, we
not observe a clear power-law decrease, normally visible
the case of coherent-noise models@14#.

As in the case of event sizes, we find a close simila
between the tree model and the ensemble. Let us first fo
on the upper two curves in Fig. 8, which correspond tos1
50.02 ands150.0025~here,s1 is measured in units of the
number of agents in the tree, which was 12 163 in this ca!.
For large t, the curves for the tree model and for the e
semble lie on top of each other, indicating the same de
pattern for long-time correlations. Only for small times the
are some deviations between the two models. The tree m
produces more aftershocks shortly after the infinite eve
This observation has its origin in the fact that the two mod
converge in the limit of large stresses, but the number
moderate stresses produced by the tree model is significa
larger than the one produced by the ensemble. At short ti

FIG. 7. Mean event size distribution of the ensemble appro
mation to a tree with 10 000 leaves. The average was taken ove
randomly generated ensembles. Quantities are plotted in arbi
units.
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after a very large event, already moderate stresses can tr
large events, thus increasing the number of events seen i
tree model as compared to the ensemble.

For large values ofs1 , the similarity between the two
models seems to disappear. The curves in Fig. 8 corresp
ing to s150.05 do not lie on top of each other. The curve f
the tree model is shifted upwards by about a factor of 3. T
discrepancy for larges1 can be understood from Fig. 9
There, we display the frequency distribution of the eve
that have been produced during the simulations for Fig
The results for the tree model and for the ensemble are v
similar. However, at an event size of about 1000, the f
quency distribution for the ensemble falls off rather quick
whereas the frequency distribution for the tree has an a
tional peak at about 1400. It is this peak that causes the s
of the probabilityPt(s>s1) in the tree model for larges1 .

i-
60
ry

FIG. 8. The probabilityPt(s>s1). The solid lines stem from the
tree model, the dashed lines stem from the corresponding ensem
From bottom to top, we haves150.05, s150.02, and s1

50.0025, wheres1 is measured in units of the maximal syste
size. For the upper two curves, the results for the tree model
very close to the ones for the ensemble. The discrepancies in
lower curve are explained in detail in the text. Quantities plotted
dimensionless.

FIG. 9. A histogram of the event sizes that have been produ
in the simulations for Fig. 8. Note that we recorded events only
to 1000 time steps after the infinite event. Therefore, the expon
of the power law is different from the one in Fig. 5. Quantities a
plotted in arbitrary units.
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The peak in the tree model arises because from tim
time a very large stress will be generated at the root of
tree, causing an event of the order of the tree’s size. In
ensemble, on the other hand, events larger than the la
subsystem are extremely unlikely.

C. The distribution of lifetimes

The lifetime of an agent is the time an agent remains
the system without being hit by stress. In the origin
coherent-noise model, the agents’ lifetimes are distribute
a power law with exponent 221/a @13#. The quantitya
depends on the stress distribution, and it is related to
mean-field exponentt of the event size distribution byt
511a. For exponential stress, e.g., we havea51. Hence,
in this case the lifetimesL are distributed asL21.

The distribution of lifetimes in a coherent-noise mod
does not change if the stress is imposed on each agent
pendently, instead of being imposed on all agents cohere
This is different to the case of event sizes or aftershocks
can be seen as follows. The derivation of the lifetime dis
bution in Ref.@13# makes use of the time-averaged distrib
tion of the agents’ thresholds, which remains the sa
whether or not the stress is imposed coherently. The o
further assumptions that enter the calculation are assu
tions about the form ofpstress(x) and pthresh(x), but no as-
sumptions about the coherence of stresses are made. T
fore, the distribution of lifetimes in a coherent-noise mod
and in a large ensemble of degenerate coherent-noise m
with size 1 is the same, provided the stress distributions
the threshold distributions are the same. Consequently, if
stress-distributions in the tree have all the samea ~e.g., are
all exponentials!, the distribution of the agents’ lifetime
should be similar to the one in a coherent-noise model w
t511a. This can be seen in Fig. 10. The distribution
lifetimes in a random tree with exponentially distribute
stresses is similar to the one in a coherent-noise model
exponential stress~compare, e.g., Fig. 10 with Fig. 5 in Re
@13#!.

D. Trees with sum rule

In the previous paragraphs, we studied simulations w
the maximum rule. Here, we will present some results fr

FIG. 10. The distribution of lifetimes in a random tree wi
exponential stresses only. We find a power-law with an exponen
21.02. This is the same result as in a coherent-noise model
exponential stress. Quantities are plotted in arbitrary units.
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simulations with the sum rule. On first glance, one wou
expect that the tree model behaves the same whethe
choose Eq.~2! or Eq. ~3! for calculating the effective stres
on the agents, at least for exponential stress, because o
~9!. However, this is not exactly the case. In Fig. 11, w
display the distribution of event sizes in a simulation whe
stresses are summed up. The tree used in this simulatio
exactly the same we used in the simulation of Fig. 5. T
allows an easy comparison between the two choices forA.
Note that all stress distributions are exponentials, which
plies that Eq.~9! holds. We observe the emergence of
power-law decrease, similar to the situation with the ma
mum rule. However, the resulting distribution is slight
steeper than in Fig. 5, with an exponent of 2.660.1. This
steeper distribution shows that the conception of a tree be
equivalent to an ensemble of coherent-noise models is
accurate when stresses are summed up. Second-order e
arise because all stress distributions contribute to the ove
system’s behavior at all times~which is in contrast to the
case when we use the maximum of the stresses!. Conse-
quently, the agents feel the stress less coherently, resultin
a smaller number of large events.

VII. CONCLUSIONS

Coherent-noise models have been proposed by New
and Sneppen to explain the occurrence of power laws
number of natural systems. The underlying mechanism
remarkably simple and robust. However, the coherent st
necessary to make these models work is an impedimen
their application, since in most systems coherence is
presenta priori, and local phenomena are important. In th
paper, we were able to show that in hierarchical conte
coherence can arise naturally in large subsystems. In the
models we presented, the system breaks down into a num
of subsystems, each of them having a high degree of co
ence and being largely independent of the rest. Interestin
the number of subsystems of sizek decreases ask22 for a
large class of different trees. The emergence of coherent
systems is closely connected to the domination of so
stress distributions by others. We should always observe
phenomenon if the functionA is proportional to a single
stress distribution in the limit of large stresses.

of
th

FIG. 11. The distribution of event sizes in a tree model wh
the stresses are summed up. The tree~including the stress distribu
tions! is exactly the same as in Fig. 5. Quantities are plotted
arbitrary units.
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We made also an interesting observation about the ag
lifetimes. We found the distribution of lifetimes to be th
same in the tree model and in coherent-noise models, as
as the stress distributions in both models have the same f
tional dependency. Furthermore, from the arguments gi
in Sec. VI C we can deduce an even more general statem
In any system where agents under the influence of stress
modeled as in coherent-noise systems, the distribution of
agents’ lifetimes will be a power law, even if there is n
correlation between stresses different agents feel. This
new explanation for the appearance of power-law distribu
lifetimes or waiting times in nonequilibrium systems val
under extremely weak conditions.

Further work extending the tree model presented h
could address appearance and disappearance of agents.
consider, for example, the case of biological evolution a
extinction, the biodiversity is constantly changing, with t
main tendency of exponential growth throughout the p
,

u-
nts

ng
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n
nt.
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a
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1000 million years@15# ~this trend, however, has change
dramatically recently, because of ever increasing human
tivity @16#!. ‘‘Real’’ extinction and speciation could be in
corporated into the tree model by removing from the tree
agents hit by stress, as it has been done already in the ca
coherent-noise models@4#. Related to this, one could con
sider trees changing their structure. Up to now, we stud
only fixed trees, mainly for reasons of simplicity. Anoth
extension could be the consideration of vector stresses,
has been done by Sneppen and Newman for the orig
coherent-noise model@13#, inspired by a similar generaliza
tion of the Bak-Sneppen model@17#.
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