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Hierarchical noise in large systems of independent agents
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A generalization of the coherent-noise moddé¥s E. J. Newman and K. Sneppen, Phys. Re\64:6226
(1996)] is presented where the agents in the model are subjected to a multitude of stresses, generated in a
hierarchy of different contexts. The hierarchy is realized as a Cayley tree. Two different ways of stress
propagation in the tree are considered. In both cases, coherence arises in large subsystems of the tree. Clear
similarities between the behavior of the tree model and of the coherent-noise model can be observed. For one
of the two methods of stress propagation, the behavior of the tree model can be approximated very well by an
ensemble of coherent-noise models, where the éinéthe systems in the ensemble scaldas. The results
are found to be independent of the tree’s structure for a large class of reasonable choices. Additionally, it is
found that power-law distributed lifetimes of agents arise even under the complete absence of correlations
between the stresses the agents f&%1063-651X98)09012-§

PACS numbegps): 05.90+m, 87.10+e

I. INTRODUCTION are embedded into a hierarchy of different contexts, all hav-

It has recently been shown that in large svstems of indei_ng influences on them. Mathematically, this idea can be de-
o y . - g€ Sy scribed with the concept of ultrametricitg0], which means
pendent “agents,” the interplay of two different types of

noise can lead to power-law distributed quantities, such atahere exists a distanai(,) such that the triangle inequality
lifetimes of the agents or sizes of reorganization evghis (A1, Ag)<maxXd(A Ap) d(A; A} holds for any three

One of the two noises, usually referred to as stress, has to girgs'ééi'fe%"g?af;ggﬁg'cﬁgg ?r? t#gr]% rITI]c()avtvrili(w: S?/i?t(iacgg?n
coherently on all agents, while the other one, usually referre yiey : 9.

o a5 mutaion o refoaing,has o ac il on escf2® 12° SOIECIE 10 Sxecty o oker veriex il be caled
agent, and on a much longer time scale. Mechanisms of thivsvill be ,called nodes. In this paper, the nodes of the tree stand
kind have been called “coherent-noise” mechanisms. Mod- ) Paper,

els incorporating coherent-noise mechanisms have been ppq;\(/jéf;erent contexts, and the agents are placed at the tree’s

forward to explain effects seen in earthquakes, rice piles, o We can formulate a generalization of the original

biological evolution and extinctiofil —4]. coherent-noise model by incorporating the above ideas. Our

In most applications, however, it is hard to justify a singleS stem consists o agents. each represented by a real num-
stress imposed on the whole system at once. In [Réfthe Y 9 ' P y
ber (threshold x; or, in the general case, a vectqr. Fur-

stress was identified with global influences on the biosphere[hermore we choose a tree with, nodes and\,= N leaves
’ | — ’

as in the case of extraterrestrial impafi§. Nevertheless, \éyhich meansN, =N, + N, vertices in total. The tree will be

there are more reasons for species to go extinct than impacts. "~ . . .
Often, species’ extinction is a local phenomeri@i. For tkept fixed throughout the simulation. At every leaf we put

example, species living in a small territory regularly die outeXaCtIy one agent. For every noflef the tree we choose a

because of the invasion of a new species, able to exploit theﬁtress distribution with probability density functid®DF)

ecological niche more effectively. A similar argument ap- p;(x). Additionally, we also choose a stress distribution for

plies to the situation of earthquakes. In Rf} the stress has every leaf of the tree, so that we have a stress distribution for

been interpreted as background noise with long Wavelengﬂ?very vertex of the tree. The stress distributions at the leaves
’How us to simulate extremely localized influences acting on

generated by some distant external source. Nonetheless, i | inal ¢ The total ber of st in th
large fault system, we would expect background noise to p@nly @ single agent. The total number of Sresses In the sys-
fem is thereforéNgyes&= N, .

resent also locally, and probably on smaller and large . )
P y P y g The course of the simulation runs as follows. At the be-

scales at the same tini@&]. L NN .
The aim of the present paper is to advance a model thaginning, the agents are initialized with random thresholds
drawn from a distributionpy,es{X). Then, in every time

while incorporating the basic ideas of coherent-noise sys- . !
tems, can deal with more complex situations by consideringtep' three actions are performédl.From each of théyess
stress on different scales. A short account of this work haStess distributions, a stresg is chosen at ran(cij)onqu) Fg)r
already been given elsewheli@]. There, only regular trees €Very agenti, from all the S; stress valuesy;’, . .. 7
(see below have been treated. above the agent in the tree, a streﬁ,’g is calculated accord-

ing to some functionA:

. . .
Il. AGENTS IN A HIERARCHICAL CONTEXT 7= Ay, ). (N

It is an observation from everyday life, as well as from
many physical systen{®], that very often objects or agents If nieﬁzxi , agenti is removed and replaced by a new one
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with a threshold chosen at random frqmy,es{X). (iii) Fi-

nally, every agent has a small probabilityto get a new

threshold, again from the distributigoy,es{X). Action (iii) .

represents the mutation or reloading mentioned in the Intro- 7

duction. o
There are a number of reasonable choices for the functior

A. In this paper, we will mainly study the “maximum rule,”

which reads 24 A5
Ay, =maxny, . ms)) 2 _
4 127 6 18 20
Another natural choice is to sum up the stresses, i.e., to usi ; :
S
(i) )y = (i) ; :
A( /AR ﬂlsi )_;1 - 3 17 19 3 0 14 12 10 26 9 8 22 15 16 21 28 30

FIG. 1. The breakdown of a regular tree with=-2 andl=4

This alternative, which we will call “sum rule,” will also be into independent subsystems. The solid lines connect agents with

discussed in this paper. the same rank, the dashed lines connect agents with different ranks.
In this example, we have two subsystems of sizgahks 26 and
lll. THE EFFECTIVE STRESS DISTRIBUTION 30), two of size 2(ranks 24 and 27 one of size Jrank 25, and

. one of size 7rank 29.
The effective stress an agent feels can be calculated ex-

actly in the case of the maximum rule, H@). The agentis g pe done. Consider, for example, the case of exponential
subjected to the stress distribution at its leaf and to the stresg,eqg distributions; (x) = exp(—x/a})/o; . In this case, we
distributions at the nodes above it. Let thereSel nodes g ' v ’

above the leaf of an agent. Then tBestress values having

influence on this agent ar® random variables{,, ... Xg 1 X

with PDF’s py(X), . . . ,ps(X). To obtain the effective stress PsunX)~ ——exp — — for x—oe, 9)
distribution, we have to calculate the PO¥,.(X) of the max ma

random variableXa,=maxXy, . .. Xg, i.e., where o pa=maxoy,0, ... 0q. A similar result can be

found in the case of stress distributions with power-law tails
[8]. It seems that in most of the reasonable cases, the sum of
the stresses will be dominated by a single distribution in the

Pmax X) dx=P(x=maxXj, ... Xg<x+dx). (4)

Note that limit of large stresses, as in the situation of the maximum of
s the stresses.
P(maxX,, ... ,XS}$X)=H P(X;<Xx). (5
! IV. REGULAR TREES
The derivative of Eq(5) with respect tox yields In this section we are interested in trees which are con-

structed as follows. We begin with a single leaf and convert
S s it into a node by connecting to it new leaves. Then we
Pmad¥) =2, pix) ] POx>X)). (6)  repeat this procedure for every new leaf. We stop the con-
i=1 j=1j#i . . .
struction when we have reached a depth itérations. Trees

Equation(6) is the exact expression for the effective Stressg_enerated.in t_his way are called regu]ar gk, The tree
on an agent in the case of the maximum rule, E3. A displayed in Fig. 1 is a regular tree with= 2. andl=4.
simple calculation shows that the right-hand side of @yjis The number of leaves in a regular tree is

dominated by the slowest decaying stress distribution. We

_
say that a distributiom;(x) decays slower than another dis- Ni=n’, (10
tribution p;(x) if there exists &, such that and the number of vertices is
pPi(xX)>p;(x) for all x>X. (7) -1
o N,=2, n'. (12)
For a set of reasonable stress distributions it is always pos- i=o

sible to identify the distributionpy(x) that is falling off | .
slowest according to this definition. Hence, we find for theTherefore, we havéN=n' agents in such a tree, ard,

PDF of the effective stress on an agent stress values have to be generated in every time step.
We saw in Sec. Il that every agent feels effectively a
PmaxX) ~ Po(X) for x—oo. (8)  single stress distribution in the limit of large stres$Ess.

(8),(9)]. Since for coherent-noise systems, large stresses give
A similar statement cannot easily be proved for the sunthe main contribution to the systems’ behavior, the stress
rule. However, in special cases the necessary calculatiordistributions that are falling of very slowly dominate large
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parts of the tree. Hence, the tree breaks down into sub- 10°
systems that are to some extent decoupled from each othe 105
For regular trees, it is relatively easy to study the average g
distribution of the subsystems’ sizes analytically. We assume
for any two stress distributionp;(x),p;(x) in the tree we 102
can identify one of the two that is falling off slower, accord- .
ing to Eq. (7). This is not a severe restriction, as we have 10
noted in Sec. IIl. Additionally, we restrict ourselves to situ- & 10°
ations in whichp;(x) andp;(x) are equally likely to fall off 107!
slower than the respective other. Under these conditions, we 1072
can rank all stress distributions in a tree, assigning rank 1 t¢ 10-3
the one that is falling off fastest, and assigning correspond- -« L v . o . . .
ingly higher ranks to the ones that are falling off slower. This 10° 10* 107 10° 10 10° 10
makes the calculation of the subsystems’ sizes relatively size
easy. For every single agent, we have to identify the corre- FIG. 2. The expected frequency of subsystems of &ize-
sponding highest rank placed above it in the thehich we  creases as a sawtooth function following approximately a power
will call the rank of the agemt Then, we simply have to law with exponent—2. The upper curve stems from a tree with
count the number of agents with the same rank. This proce=17 andn=2. It has been rescaled by a factor of 100 so as not to
dure is illustrated in Fig. 1. overlap with the lower curve. The lower curve stems from a tree
We expect the mean distribution of subsystems’ sizes tavith | =5 andn=10. Quantities are plotted in arbitrary units.
have sharp peaks whenever the size of a complete subtree is
reached, because the probability for a single rank to be Nsud K) Pingedk)
higher than all others further down the tree should be larger f(nk)~ “Hh n N f(k), (16)
than the probability for a complicated arrangement of ranks
to produce a subsystem of a certain size. The kizd a  \yhich impliesf (k) ~k 2.
subsystem is the number of leaves in that subsystem. The Thjs result is interesting. The frequency of subsystems of
functional dependency of the peaks at s_kze calculated as  gjzek scales a2, independent of the parametemwhich
follows. The expected frequgnd)(k) of independent sgb- characterizes the structure of the tree.
trees of depthb, corresponding to a subsystem of size e have tested these predictions by measuring the fre-
=n", can be written as the number of such subtrees in thgencyf (k) in computer experiments. Our simulations are
whole systemNg,{n”) times the probability that any of set yp as follows. We choose a tree witf vertices in total.

frequency

these subtrees will be independent of the ®Bsteedn®).  For several thousand times, we assign the integers from 1 to
Hence we write N, randomly to the vertices of the tree. The integers stand
by b b for the rank of the stress distributions at the vertices. For

F(n®)=Ngufn”) Pinged n°)- (120 every single realization of this process, we determine the

sizes of the subsystems the tree breaks down into, and com-
pute a histogram of the sizes’ frequencies. Finally, we calcu-
late the average over all histograms.

Figure 2 shows the results of such measurements for two
different trees with 10 000 histograms each. We can see clear

A subtree is independent of the rest if the rank at its root is .
higher than all other ranks in the subtree and at the nod eaks at powers af, which correspond to complete subtrees.
e also find the heights of the peaks to decreade &sin

above the subtree. The probabiIFtyndep(nb) is therefore the .
reciprocal of the number of vertices in the subtree plus theagreement with Eq(16).
number of vertices above the subtree, hence,

The number of subtrees of sir& is

Ng,gn?)=n'"". (13

V. RANDOM TREES

b -1
by _ [ The regular trees treated in the previous section can be
Pindged ") = (I b+i20 n ) ' (14 easily ger?eralized to a broader class of trees, which we will
call “random trees.” Only a small change in the construc-
If we increaseb by one, we getNgn°"*)=n'"P"1  tion algorithm is necessary. To construct a regular tree, in
=NgnP)/n. With slightly more effort, we find also every iteration step we connethew leaves to every leaf of
the previous step. The straightforward generalization of this
btl -1 procedure is to choose a random number of new leaves for
Pinged °" )= ( l-b—1+ > n') every leaf of the previous construction step. To avoid confu-
=0 sion with the parametan, we will call this random number
b\l 4 N;ang- The random variablae,,,qwill take valuei with prob-
= ( Il—b+n>, n') ~ ﬁPmdep(nb). ability p;, i.e., P(Nane=i)=p;, i=0,1,2,. .., Z;p;=1. We
=0 denote the mean of,,,q by m:=(n,,,9 and the variance by
(15) o?. Moreover, we assumm>1 in all cases considered in
this paper. In the limito>—0, the random trees reduce to
Therefore, we can write regular trees witm=m.
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The construction of a random tree as prescribed aboveisi 10 ——m———————1————T——

branching process with generations. From the theory of 103 -

branching process¢42], we know that for large the num- 102 i

ber of leaves in the tree will be 10! |
»

N,=wnl, @ g 7

g 10—1 .

whereW s a random variable with megWw)=1. The factor & 10~? -

W takes into account fluctuations that happen at the begin- 10-3
ning of the tree’s construction. Correspondingly, for the total -«

number of vertices in the tree we use the approximation 10-5 i
| 10—6 L ol L L 1 . L 1 . | L
i 10° 10! 102 10° 10* 10°
N,~W>, m', (18) size
|

=0
FIG. 3. The expected frequency of subsystems of kize a
The above two equations are the generalizations of Eqsandom tree withm=1.993 and =13. The dotted line is the ap-

(10),(11) for random trees. proximation Eq.(22). Quantities are plotted in arbitrary units.
As in the case of regular trees, we are interested in the

quantity f(k), the expected frequency with which indepen- N 1 -1

dent subsystems of sizeoccur. In the previous section we a= kzl T 1-Tog K+ (k—1) [m/(m=1)] (23

made the assumption that the main contributionsf (k)
come from complete subtrees. The comparison with numeri-
cal data showed that this assumption leads to a good under- Equation(22) is in good agreement with measurements
standing of the structure df(k). Consequently, in the case from computer experiments. We have done simulations with
of random trees we also assume that we can concentrate §gveral different probability distributions far,,,4, such as
complete subtrees. uniform [po=c/(Npaxtc), =0, pi=1/(Nyatc) for 1<i

The number of subtrees of siein a large tree is on  <Nmax, Pi=0 for np,,<i], geometric seriegp;=bc'~* for
average the size of the tréehich is the number of leaves in =1, b,c>0, b<l-c, po=1-3{_p;], or Gaussian(p;
the tree divided byk. Hence we have ~exd —(i—b)%c]; hereb andc are not mean and variance,
because we use only discrete values of the Gaussian prob-
ability density functiop. In all cases, we find Eq22) to
approximate well the measured frequeri¢lt). An example
is shown in Fig. 3. Deviations from the straight line can be
which is equivalent to Eq(13) for regular trees. seen for very smalk and for very largek. In these two

The probability for a subtree of sizeto be dominated by limiting cases, the assumptions of the above approximations
a single stress distribution is one over the total number ofire no longer valid. Consider first the case of a very skall
vertices in the subtree. The number of vertices is asymptotiThis corresponds t&k~m, because we always assume
cally the same as the number of leaves. This can be see&N, (otherwise, the tree would have roughly a depth of 1,
from Egs.(17) and(18). The leading term in the number of which would not be very interestinglf k is close tom, the
vertices in a random tree E(L8) is exactly the expression number of subtrees of sizedepends strongly on the exact
for the number of leaves in the same tree @q). Hence we  form of the probability distribution of4,4, and Eq.(19) is
have no longer valid. Since, as seen above, the main contribution

to f(k) comes from complete subtrees, the distribution of

N
Nou k)=, (19

1 Nang then has effects oM(k). For example, in a situation
Pinged K) ~ K (20 whereP(n,y,i— M) =0, there should be a clear dip fiik) at
k=m.
We combine this result with Eq19) and obtain Consider now the case of a very larigeAgain Eq.(19) is

no longer valid. This time because there are so few subtrees
of sizek. Hence, the exact structure of the tree comes into
f(k)~—. (21)  play. For example, a tree witN, =10 containing a subtree
k with k=6x10* will not contain another subtree witk

: . =5x10%. Therefore, in this situation there should be a clear
As in the case of regular trees, the frequency of mdependerﬂ)teak atk=6x 10°

subtrees of siz& scales a& 2, independent of the details of
the tree. With a little effort, it is also possible to calculate the

constant of proportionality. We find VI. SIMULATION RESULTS
As the main result of Secs. IV and V, we found the dis-
f(k)= 0‘_N| m-1 (22) tribution of independent subsystems of dkde the tree to be
k2 m '’ proportional tok~ 2. Therefore, in the limit of large stress

values 7, we expect the tree model to behave like an en-
with semble of coherent-noise models whose sizes scae as
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FIG. 4. The average rank of the subsystems in a random tree. F|G. 6. The event size distribution in a random tréewer
Quantities plotted are dimensionless. curve and in the corresponding ensemble of coherent-noise sys-

tems(upper curvé The structure of the tree is the same as in Fig.

When constructing the ensemble approximation of a cerb, but the stress distributions at the vertices are different. The inset
tain tree, we have to choose the right stress distribution foshows again the distribution of subsystems obtained from the rank-
every coherent-noise model in the ensemble. In principleing procedure. Quantities are plotted in arbitrary units.
this can be a complicated task. However, we have found that
a very simple approach instead works sufficiently well intribution of event sizes of a tree model, the upper curve
many cases. It can be motivated with Fig. 4. There, we havehows the same distribution of the corresponding ensemble
recorded the average ranks of the subsystems in a tree. lof coherent-noise systems. The heights of the curves reflect
terestingly, the average rank varies only very little with thethe total number of events we recorded for each model and
subsystem’s sizk. Therefore, in a further approximation, we have no special meaning. The sizes of the systems in the
assume that all the stress distributions that dominate a sulensemble are exactly the ones we obtained for the sizes of
system have the same rank, i.e., they are all the a@eise  the tree’s subsystems while doing the ranking procedure de-
a singlestress distributionbut thestress valueare still cho-  scribed in Sec. IV. The distribution of these sizes is shown in
sen independently for all systems in the ensefble the inset of Fig. 5.

Our numerical simulations show the similarity between The tree used in Fig. 5 is a random tree with 14 213 ver-
the tree model and the ensemble. We begin with results foices and 12 163 leaves. Hence, both the tree model and the
the maximum rule. ensemble contain 12 163 agents in total. The stress distribu-
tions used in the tree are exponentials exgg;)/o;, with
different valueso; between 0.03 and 0.06. The stress distri-

) . . _ bution used in the ensemble is an exponential with
As in previous worK 13,14, an “event” is the reorgani- — g ge.

zation of agents because of stress in a single time step. The a5 we can see in Fig. 5, the tree model and the ensemble
size of an event is the total number of agents hit by theyehave very similar with regard to event sizes. In both cases,
stress. _ _ _ _ _ _ we find approximately a power-law decrease. A power-law
The event sizes of a typical simulation with maximum fj; gives an exponent of 2:80.15 for the tree model, and of
rule are recorded in Fig. 5. The lower curve shows the diso 5 15 for the ensemble. Note the clear difference be-
tween the exponent in these two systems and the exponent in
107 Ty a single coherent-noise model with exponential stress. There,

A. The distribution of event sizes

4
108 123 b the exponent i§ 1.8_50._03 [_13]. o
[ The event-size distribution depends strongly on the distri-

108 § 4 bution of the subsystems in the tree. In Fig. 6, we have used
B I g ] the same tree structure and the same stress distributions as in
g 104 | = 3 Fig. 5, but the stress distributions have been assigned to dif-
% ferent vertices. As a result, in this case the tree model has a
H

] lack of large subsystems, as can be seen in the inset of Fig. 6.
3 Consequently, large events appear less frequently, and the
distribution is significantly steeper than in Fig.(Bow we
have an exponent of 2490.2 for the tree model and an ex-
o ponent of 2.8 0.2 for the ensemble
10° 10! 10%, 10? 10* It would be interesting to average over all possible assign-
event size s ments of the stress distributions to the different vertices in
FIG. 5. The event size distribution in a random tréewer ~ Order to gain a better understanding of a typical event size
curve and in the corresponding ensemble of coherent-noise sygdistribution in a large tree. However, we are not able to reach
tems (upper curvié The inset shows the distribution of the tree’s such a result due to the enormous amount of computing
subsystems. Quantities are plotted in arbitrary units. power that is needed. The simulation of the full tree as in

—
()
<]

10' b
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1 10 100 1000

FIG. 7. Mean event size distribution of the ensemble approxi- time ¢

mation to a tree with 10 000 leaves. The average was taken over 60 g1 g The probabilityP,(s=s,). The solid lines stem from the
randomly generated ensembles. Quantities are plotted in arbitraffee model, the dashed lines stem from the corresponding ensemble.
units. From bottom to top, we haves;=0.05, s;,=0.02, and s;

Figs. 5 or 6 takes in fact about 150 hours of computing time_, 0-0025, wheres, is measured in units of the maximal system

on a UltraSPARC 2 with 168 MHz. On the other hand, the\s/'zre' Flor thte ttfperntwof cru:xes, r:herrzzlsuItihfordtihertreenn;od?rl] ?[.Le

simulation of the ensemble approximation takes only 6 hour?,e y close fo the ones fof the ensemble. 1ne discrepancies €
.Tower curve are explained in detail in the text. Quantities plotted are

on the same system. Therefore, we can do the correspondw(]igm .

. . - ensionless.

calculations for the ensemble approximation. Of course we

cannot average over all possible configurations, but we can _

average over a reasonably large random sample. We hawdter a very large event, already moderate stresses can trigger

generated 60 ensemble approximations of a tree with 10 00large events, thus increasing the number of events seen in the

leaves. The event size distributions we found were all veryiree model as compared to the ensemble.

similar. In Fig. 7 we display the average event size distribu- For large values of,, the similarity between the two

tion we obtained. The distribution has a power-law tail with models seems to disappear. The curves in Fig. 8 correspond-

exponent 2.5 0.05. ing tos;=0.05 do not lie on top of each other. The curve for
the tree model is shifted upwards by about a factor of 3. This

B. Aftershocks discrepancy for larges; can be understood from Fig. 9.

Coherent-noise models display aftershogkd4], i.e., an I‘gghhere, we display the frequency distribution of the events

increased number of large events can be observed in t at have been produced during the simulations for Fig. 8.
aftermath of a very large event. Consequently, we study th e results for the tree model and for the ensemble are very

decay pattern of the aftershocks in the tree model and in th?—z'm"ar' I—!ovyevey, at an event size of about 1000, thg fre-
ensemble. We will restrict ourselves to the case of events ifu€"cY distribution for the ensemble falls off rather quickly,

P whereas the frequency distribution for the tree has an addi-
:Eg ?;t:;;nim dofma(;r:gggl (;r;f\llrélltoep(eageinr:. %Vé;]fol:gi\évucr:(laosSely tional peak at about 1400. It is this peak that causes the shift

shows the change of the probabiliB;(s=s,) with time. of the probabilityP;(s=s;) in the tree model for largs; .

P.(s=s;) is the probability to find an event larger than some
constants, at timet after an initial infinite event. For both 107 LIRS e T
the tree model and the ensemble, the probabHi{s=s,) o L tree model — |
decreases with time, indicating aftershocks. However, we dc ¢ ensemble of coherent-noise models - 3
not observe a clear power-law decrease, normally visible in g5 [
the case of coherent-noise modgld]. >
X . . T 4 [
As in the case of event sizes, we find a close similarity § 10
between the tree model and the ensemble. Let us first focu g 10° b
on the upper two curves in Fig. 8, which correspond{o &
=0.02 ands; =0.0025(here,s; is measured in units of the 10
number of agents in the tree, which was 12 163 in this)case
For larget, the curves for the tree model and for the en- :
semble lie on top of each other, indicating the same decay g el N A L]
pattern for long-time correlations. Only for small times there 10° 10 102, 10° 104
are some deviations between the two models. The tree model event size
produces more aftershocks shortly after the infinite event. F|G. 9. A histogram of the event sizes that have been produced
This observation has its origin in the fact that the two modelsn the simulations for Fig. 8. Note that we recorded events only up
converge in the limit of large stresses, but the number ofo 1000 time steps after the infinite event. Therefore, the exponent
moderate stresses produced by the tree model is significantyf the power law is different from the one in Fig. 5. Quantities are
larger than the one produced by the ensemble. At short timedotted in arbitrary units.

1L
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FIG. 10. The distribution of lifetimes in a random tree with FIG. 11. The distribution of event sizes in a tree model where
exponential stresses only. We find a power-law with an exponent othe stresses are summed up. The tieeluding the stress distribu-
—1.02. This is the same result as in a coherent-noise model witkions) is exactly the same as in Fig. 5. Quantities are plotted in
exponential stress. Quantities are plotted in arbitrary units. arbitrary units.

The peak in the tree model arises because from time teimulations with the sum rule. On first glance, one would
time a very large stress will be generated at the root of thexpect that the tree model behaves the same whether we
tree, causing an event of the order of the tree’s size. In thehoose Eq(2) or Eg. (3) for calculating the effective stress
ensemble, on the other hand, events larger than the largesh the agents, at least for exponential stress, because of Eq.

subsystem are extremely unlikely. (9). However, this is not exactly the case. In Fig. 11, we
display the distribution of event sizes in a simulation where
C. The distribution of lifetimes stresses are summed up. The tree used in this simulation is

The lifetime of an agent is the time an agent remains irf*@ctly the same we used in the simulation of Fig. 5. This
the system without being hit by stress. In the original@llows an easy comparison between the two choicesAfor

coherent-noise model, the agents’ lifetimes are distributed aljote that all stress distributions are exponentials, which im-
a power law with exponent 21/a [13]. The quantitye  Plies that Eq.(9) holds. We observe the emergence of a
depends on the stress distribution, and it is related to thgower-law decrease, similar to the situation with the maxi-
mean-field exponent of the event size distribution by ~ mum rule. However, the resulting distribution is slightly

=1+ a. For exponential stress, e.g., we have 1. Hence, steeper than in Fig. 5, with an exponent of 2@G1. This
in this case the lifetimek are distributed ag 1. steeper distribution shows that the conception of a tree being

The distribution of lifetimes in a coherent-noise model €quivalent to an ensemble of coherent-noise models is less
does not change if the stress is imposed on each agent ind@ccurate when stresses are summed up. Second-order effects
pendently, instead of being imposed on all agents coherentlyrise because all stress distributions contribute to the overall
This is different to the case of event sizes or aftershocks. IBystem’s behavior at all time@vhich is in contrast to the
can be seen as follows. The derivation of the lifetime distri-case when we use the maximum of the strgss€snse-
bution in Ref.[13] makes use of the time-averaged distribu-guently, the agents feel the stress less coherently, resulting in
tion of the agents’ thresholds, which remains the samé smaller number of large events.
whether or not the stress is imposed coherently. The only
further assumptions that enter the calculation are assump- VIl. CONCLUSIONS

tions about the form oPgyesfX) and pyres{X), but no as- .
sumptions about the coherence of stresses are made. There_Coherent-nmse models have been proposed by Newman

fore, the distribution of lifetimes in a coherent-noise modeland Sneppen to explain the occurrence qf power 'aW.S in a
and in a large ensemble of degenerate coherent-noise mod&gmber of “f”““fa' systems. The underlying mechanism is
with size 1 is the same, provided the stress distributions anaemarkably simple and robust. However,l the C.Oheref“ stress
the threshold distributions are the same. Consequently, if th ecessary to make these models work is an impediment to

stress-distributions in the tree have all the samée.g., are their applic_ati_on, since in most systems_coherence is not
all exponentials the distribution of the agents’ lifetimes presenta priori, and local phenomena are important. In this

should be similar to the one in a coherent-noise model witP2Per We were Z.ible to show that in hierarchical contexs,

7=1+a. This can be seen in Fig. 10. The distribution of coherence can arise naturally in large subsystems. In the tree
lifetimes in a random tree with exponentially distributed models we presented, the system_breaks_ down into a number
stresses is similar to the one in a coherent-noise model witRf subsystems, each of them having a high degree of coher-

. . . : . ence and being largely independent of the rest. Interestingly,
exponential stresecompare, e.g., Fig. 10 with Fig. 5 in Ref. the number of subsystems of sikedecreases a2 for a

[13)). large class of different trees. The emergence of coherent sub-
) systems is closely connected to the domination of some
D. Trees with sum rule stress distributions by others. We should always observe this
In the previous paragraphs, we studied simulations wittphenomenon if the functiotd is proportional to a single
the maximum rule. Here, we will present some results fromstress distribution in the limit of large stresses.
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We made also an interesting observation about the ageni©00 million years[15] (this trend, however, has changed
lifetimes. We found the distribution of lifetimes to be the dramatically recently, because of ever increasing human ac-
same in the tree model and in coherent-noise models, as loriyity [16]). “Real” extinction and speciation could be in-
as the stress distributions in both models have the same funcerporated into the tree model by removing from the tree the
tional dependency. Furthermore, from the arguments giveagents hit by stress, as it has been done already in the case of
in Sec. VI C we can deduce an even more general statememoherent-noise modelgl]. Related to this, one could con-

In any system where agents under the influence of stress asi&er trees changing their structure. Up to now, we studied
modeled as in coherent-noise systems, the distribution of thenly fixed trees, mainly for reasons of simplicity. Another
agents’ lifetimes will be a power law, even if there is no extension could be the consideration of vector stresses, as it
correlation between stresses different agents feel. This is laas been done by Sneppen and Newman for the original
new explanation for the appearance of power-law distribute¢oherent-noise mod¢L3], inspired by a similar generaliza-
lifetimes or waiting times in nonequilibrium systems valid tion of the Bak-Sneppen modEgl7].

under extremely weak conditions.

Further work extending the tree model presented here ACKNOWLEDGMENTS
could address appearance and disappearance of agents. If we
consider, for example, the case of biological evolution and We thank Thomas Daube for useful comments at an early
extinction, the biodiversity is constantly changing, with the stage of the manuscript and Xavier Gabaix for pointing us to
main tendency of exponential growth throughout the past simplified calculation of the effective stress distribution.
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